Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations

نویسندگان

  • Sunyoung Bu
  • Jingfang Huang
چکیده

In the recently developed Krylov deferred correction (KDC) methods for ordinary differential equation initial value problems [11], a Picard-type collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using a Newton-Krylov method. Existing analyses show that these KDC methods are super convergent, A-stable, B-stable, symplectic, and symmetric. In this paper, we investigate the efficiency of semi-implicit KDC (SI-KDC) methods for problems which can be decomposed into stiff and non-stiff components. Preliminary analysis and numerical results show that SI-KDC methods display very similar convergence of Newton-Krylov iterations compared with fully-implicit (FI-KDC) methods but can significantly reduce the computational cost in each SDC iteration for the same accuracy requirement for certain problems. Key–Words: Ordinary Differential Equation, Krylov Deferred Correction, Semi-Implicit Schemes, Preconditioner

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-implicit Krylov deferred correction methods for differential algebraic equations

In the recently developed Krylov deferred correction (KDC) methods for differential algebraic equation initial value problems [33], a Picardtype collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using Newton-Krylov methods. KDC methods have the advantage that methods with...

متن کامل

Semi-implicit Spectral Deferred Correction Methods for Ordinary Differential Equations∗

A semi-implicit formulation of the method of spectral deferred corrections (SISDC) for ordinary differential equations with both stiff and non-stiff terms is presented. Several modifications and variations to the original spectral deferred corrections method by Dutt, Greengard, and Rokhlin concerning the choice of integration points and the form of the correction iteration are presented. The st...

متن کامل

High Accuracy Semi-implicit Spectral Deferred Correction Decoupling Methods for a Parabolic Two Domain Problem

A numerical approach to estimating solutions to coupled systems of equations is partitioned time stepping methods, an alternative to monolithic solution methods, recently studied in the context of fluid-fluid and fluid-structure interaction problems. Few analytical results of stability and convergence are available, and typically such methods have been limited to first order accuracy in terms o...

متن کامل

Accelerating the convergence of spectral deferred correction methods

In the recent paper by Dutt, Greengard and Rokhlin, a variant of deferred or defect correction methods is presented which couples Gaussian quadrature with the Picard integral equation formulation of the initial value ordinary differential equation. The resulting spectral deferred correction methods (SDC) have been shown to possess favorable accuracy and stability properties even for versions wi...

متن کامل

A Fully Implicit Method for Lattice Boltzmann Equations

Existing approaches for solving the lattice Boltzmann equations with finite difference methods are explicit and semi-implicit; both have certain stability constraints on the time step size. In this work, a fully implicit second-order finite difference scheme is developed. We focus on a parallel, highly scalable, Newton–Krylov–RAS algorithm for the solution of a large sparse nonlinear system of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009